POINCARÉ NORMAL FORMS AND SIMPLE COMPACT LIE GROUPS
نویسندگان
چکیده
منابع مشابه
Poincaré normal forms and simple compact Lie groups
We classify the possible behaviour of Poincaré-Dulac normal forms for dynamical systems in R with nonvanishing linear part and which are equivariant under (the fundamental representation of) all the simple compact Lie algebras and thus the corresponding simple compact Lie groups. The “renormalized forms” (in the sense of [22]) of these systems is also discussed; in this way we are able to simpl...
متن کاملEquivariant Gerbes over Compact Simple Lie Groups
Using groupoid S-central extensions, we present, for a compact simple Lie group G, an infinite dimensional model of S-gerbe over the differential stack G/G whose Dixmier-Douady class corresponds to the canonical generator of the equivariant cohomology H G(G). c © 2001 Académie des sciences/Éditions scientifiques et médicales Elsevier SAS Gerbes Equivariantes sur les groupes de Lie simples compa...
متن کاملOrthogonal Polynomials of Compact Simple Lie Groups
Recursive algebraic construction of two infinite families of polynomials in n variables is proposed as a uniform method applicable to every semisimple Lie group of rank n. Its result recognizes Chebyshev polynomials of the first and second kind as the special case of the simple group of type A1. The obtained not Laurent-type polynomials are equivalent to the partial cases of theMacdonald symmet...
متن کاملIsospectral Metrics and Potentials on Classical Compact Simple Lie Groups
Given a compact Riemannian manifold (M,g), the eigenvalues of the Laplace operator ∆ form a discrete sequence known as the spectrum of (M,g). (In the case the M has boundary, we stipulate either Dirichlet or Neumann boundary conditions.) We say that two Riemannian manifolds are isospectral if they have the same spectrum. For a fixed manifold M , an isospectral deformation of a metric g0 on M is...
متن کاملMaximal Compact Normal Subgroups and Pro-lie Groups
We are concerned with conditions under which a locally compact group G has a maximal compact normal subgroup K and whether or not G/K is a Lie group. If G has small compact normal subgroups K such that G/K is a Lie group, then G is pro-Lie. If in G there is a collection of closed normal subgroups {Ha} such that f~| Ha = e and G/Ha is a Lie group for each a, then G is a residual Lie group. We de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Modern Physics A
سال: 2002
ISSN: 0217-751X,1793-656X
DOI: 10.1142/s0217751x02011382